Statement
Egerov's Theorem : Suppose
is a locally finite Borel measure and
is a sequence of measurable functions defined on a measurable set
with
and
a.e. on E.
Then:
Given
we may find a closed subset
such that
and
uniformly on
[1]
Proof
WLOG assume
for all
since the set of points at which
is a null set. Fix
and for
we define
. Since
are measurable so is their difference. Then since the absolute value of a measurable function is measurable each
is measurable.
Now for fixed
we have that
and
. Therefore using continuity from below we may find a
such that
.
Now choose
so that
and define
. By countable subadditivity we have that
.
Fix any
. We choose
such that
. Since
if
then
. And by definition if
then
whenever
. Hence
uniformly on
.
Finally, since
is measurable, using HW5 problem 6 there exists a closed set
such that
. Therefore
and
on
Corollary
Bounded Convergence Theorem : Let
be a seqeunce of measurable functions bounded by
, supported on a set
with finite measure and
a.e. Then
[2]
Proof
By assumptions on
,
is measurable, bounded, supported on
for a.e.
. Fix
, then by Egerov we may find a measurable subset
of
such that
and
uniformly on
. Therefore, for sufficiently large
we have that
for all
. Putting this together yields
Since
was arbitrary and
is finite by assumption we are done.
Note this theorem could also be proved in one line using dominated convergence theorem with dominating function
, but traditionally one proves bounded convergence before dominating convergence.
References
- ↑ Stein & Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Chapter 1 §4.3
- ↑ Stein & Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Chapter 2 § 1