The Moreau-Yosida Regularization: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
(added potential list of references, added definition of proper and Moreau-Yosida regularization)
m (→‎Definitions: changed wording of a definition)
Line 8: Line 8:
Let <math>(X,d)</math> be a metric space. A function <math>g : X \to (-\infty,+\infty]</math> is said to be '''proper''' if it is not identically equal to <math>+\infty</math>, that is, if there exists <math>x \in X</math> such that <math>g(x) < +\infty</math>.
Let <math>(X,d)</math> be a metric space. A function <math>g : X \to (-\infty,+\infty]</math> is said to be '''proper''' if it is not identically equal to <math>+\infty</math>, that is, if there exists <math>x \in X</math> such that <math>g(x) < +\infty</math>.


Given a function <math>g : X \to (-\infty,+\infty]</math>, its '''Moreau-Yosida regularization''' <math>g_k : X \to (-\infty,+\infty]</math> is given by  
For a given function <math>g : X \to (-\infty,+\infty]</math> and <math>k \geq 0</math>, its '''Moreau-Yosida regularization''' <math>g_k : X \to (-\infty,+\infty]</math> is given by  


:<math>g_k(x) := \inf\limits_{y \in X} \left[ g(y) + k d(x,y) \right],</math>
:<math>g_k(x) := \inf\limits_{y \in X} \left[ g(y) + k d(x,y) \right].</math>
 
where <math>k \geq 0</math>.


==Examples==
==Examples==

Revision as of 21:18, 21 January 2022

(to be filled in)

Motivation

(to be filled in)


Definitions

Let be a metric space. A function is said to be proper if it is not identically equal to , that is, if there exists such that .

For a given function and , its Moreau-Yosida regularization is given by

Examples

(to be filled in, hopefully with pictures!)



References

Possible list of references, will fix accordingly

Bauschke-Combette Ch 12.[1]; Santambrogio (6)[2]; Ambrosio-Gigli-Savare (59-61)[3]

  1. Bauschke, Heinz H. and Patrick L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd Ed. Ch. 12. Springer, 2017.
  2. Santambrogio, Filippo. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling Ch. 1.1. Birkhäuser, 2015.
  3. Ambrosio, Luigi, Nicola Gigli, and Giuseppe Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Ch. 3.1. Birkhäuser, 2005.