Isoperimetric inequality and OMT
Jump to navigation
Jump to search
The classic isoperimetric inequality
A very interesting application of optimal transport is a proof of the isoperimetric inequality. The first proof with an OMT argument is due to Gromov and the main tool is the Knothe's map. [1]. This proof is based on an idea by Knothe [2]. The classic isoperimetric inequality in states that the round ball has the minimal (n-1)-dimensional volume of the boundary among all the domains with a given fixed volume. This is equivalent to say that every set has a larger perimeter than the ball with the same volume. I will present this proof following the exposition given in chapter two in [3]. The usually way to state this is the following:
- ↑ V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, with an appendix by M. Gromov, Lecture notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)
- ↑ Herbert Knothe. "Contributions to the theory of convex bodies.." Michigan Math. J. 4 (1) 39 - 52, 1957
- ↑ F. Santambrogio. Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs and Modeling (2015)