Modes of Convergence
Jump to navigation
Jump to search
Relevant Definitions[1]
Denote our measure space as . Note that a property p(x) holds for almost every if the set has measure zero.
- A sequence of functions converges pointwise if for all .
- A sequence of functions converges uniformly if .
- A sequence of measurable functions converges to pointwise almost everywhere if for almost every , or .
- A sequence of measurable functions converges in if
== Relevant Properties [2]
==
- through uniform Convergence through pointwise convergence pointwise a.e. convergence
- through convergence through pointwise a.e convergence up to a subsequence
- Pointwise a.e. convergence equipped with dominating function implies convergence.