Measures

From Optimal Transport Wiki
Revision as of 03:41, 18 December 2020 by Tomas (talk | contribs) (→‎References)
Jump to navigation Jump to search

Definition

Let be a set and let be a -algebra. Tbe structure is called a measurable space and each set in is called a measurable set. A measure on (also referred to simply as a measure on if is understood) is a function that satisfies the following criteria:

  1. ,
  2. Let be a disjoint sequence of sets such that each . Then, .

If the previous conditions are satisfied, the structure is called a measure space.

Additional Terminology

Let be a measure space.

  • The measure is called finite if .
  • Let . If there exist such that and (for all ), then is -finite for .
  • If is -finite for , then is called -finite.
  • Let be the collection of all the sets in with infinite -measure. The measure is called semifinite if there exists such that and , for all .

Properties

Let be a measure space.

  1. Finite Additivity: Let be a finite disjoint sequence of sets such that each . Then, . This follows directly from the defintion of measures by taking .
  2. Monotonicity: Let such that . Then, .
  3. Subadditivity: Let . Then, .
  4. Continuity from Below: Let such that . Then, .
  5. Continuity from Above: Let such that and for some . Then, .

Examples

  • Let be a non-empty set and . Let be any function from to . Given , define . Then, the function defined by is a measure. This measure has the following properties:
  1. The measure is semifinite if and only if for every .
  2. The measure is -finite if and only if is semifinite and is countable for every .

There are special cases of this measure that are frequently used:

  1. When fixing , the resulting measure is referred to as the counting measure.
  2. Let be fixed. By defining , the resulting measure is referred to as the point mass measure or the Dirac measure.
  • Let be an uncountable set. Let be the -algebra of countable or co-cocountable sets of . The function defined as is a measure.
  • Let be an infinite set. Let . The function defined as is not a measure. To verify that it is not a measure, it is sufficient to take , and note that . In other words. the countable additivity property is not satisfied. However, does satisfy the finite additivity property.

Complete Measures

Consider a measure space . A set is called a -null set (or simply null set) if . A property holds -almost everywhere (or simply almost everywhere) if satisfies and .

A measure space is called complete if contains all subsets of its null sets. An incomplete measure space can be constructed by taking and with . The set is a null set in this case, but .

Given an incomplete measure , the following theorem guarantees that a complete measure space this measure space can be extended to a complete measure space . The measure is called the completion of , and is called the completion of with respect to .

Theorem Suppose that is a measure space. Let and . Then, is a -algebra, and there is a unique extension of to a complate measure on .

References

Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition. Craig, Katy. MATH 201A Lecture 4. UC Santa Barbara, Fall 2020. Craig, Katy. MATH 201A Lecture 5. UC Santa Barbara, Fall 2020.