Borel-Cantelli Lemma

From Optimal Transport Wiki
Revision as of 05:55, 17 December 2020 by Yjg o (talk | contribs) (Created page with "=== '''ICTP Real Analysis''' === <blockquote>前言:该笔记开始于2020暑假的最后一个月。由于Royden这本书中已经将定理及其证明讲述得很详细...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

ICTP Real Analysis

前言:该笔记开始于2020暑假的最后一个月。由于Royden这本书中已经将定理及其证明讲述得很详细,写这个笔记的目的主要是疏通脉络,同时挑选一些比较重要或者有代表性的定理证明。对于每一个部分的开头,我试图整理出一些主要的脉络和逻辑链。这样即使对于这些知识的构架变得生疏了以后,也能很快通过重新阅读笔记来捡起来 :)

更新(10/3/2020):对于ICTP课程中一些更加一般化的测度论的结论,打算通过IMPA的课程以查漏补缺的方式填上。因此这个笔记会逐渐增添内容。

Part 0

sigma-algebra Borel set,

set, set.

(Prop) Every nonempty open set is the disjoint union of a countable collection of open intervals.

证明摘要:基于开集中的任意,定义 . 易证. 根据有理数在实数中的稠密性,可在 和有理数 之间建立一一对应关系。显然 不相交,且因其与有理数的一一对应对应关系可数。得证。

(Prop) Every closed set in can be written as a countable union of compact sets.

Given a set , a collection of subsets of is called a algebra provided that

  1. it contains the entire set and the empty set
  2. closed under complement
  3. closed under countable union

(Defn) Borel set

The collection of Borel sets of real numbers is the smallest algebra of sets of real numbers that contains all of the open sets of real numbers.

Egoroff's theorem).