L1 Space
Introduction
Let be a measure space. From our study of integration, we know that if are integrable functions, the following functions are also integrable:
- , for
This shows that the set of integrable functions on any measurable space is a vector space. Furthermore, integration is a linear functional on this vector space, ie a linear function sending elements in our vector space to , one would like to use integration to define a norm on our vector space. However, if one were to check the axioms for a norm, one finds that if almost everywhere, then . This motivates our definition of to be the set of integrable functions up to equivalence to sets of measure zero.
Space
In this section, we will construct .
Definition: Let denote the set of integrable functions on , ie . Define an equivalence relation: if a.e. Then Failed to parse (unknown function "\coloneqq"): {\displaystyle L^1(\mu)\coloneqq L^1/\sim} .