Simple Function

From Optimal Transport Wiki
Jump to navigation Jump to search

The simplest functions you will ever integrate, hence the name.

Definition

Let be a measure space. A measurable function is a simple function[1] if is a finite subset of . The standard representation[1] for a simple function is given by

,

where is the indicator function on the disjoint sets that partition , where .

Integration of Simple Functions

These functions earn their name from the simplicity in which their integrals are defined[2]. Let be the space of all measurable functions from to Then

where by convention, we let . Note that is equivalent to and that some arguments may be omitted when there is no confusion.

Furthermore, for any , we define

Properties of Simple Functions

Given simple functions , the following are true[2]:

  • if ;
  • ;
  • if , then ;
  • the function is a measure on .

Proof[3]

Let and be simple functions with their corresponding standard representations.

We show the first claim. Suppose . Then , implying . Similarly, . Thus, the first statement holds for this case.

Suppose . Then

.

Next, we show the second statement. Notice that

Failed to parse (unknown function "\math"): {\displaystyle E_i = \cup_{j=1}^m (E_i \cap F_j)<\math> and <math>F_j = \cup_{i=1}^n (F_j \cap E_i).}

Then


<math><\math>

References

  1. 1.0 1.1 Craig, Katy. MATH 201A Lecture 11. UC Santa Barbara, Fall 2020.
  2. 2.0 2.1 Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition.
  3. Craig, Katy. MATH 201A Lectures 12-13. UC Santa Barbara, Fall 2020.