Monotone Convergence Theorem

From Optimal Transport Wiki
Revision as of 05:37, 6 December 2020 by 201A Qiqi (talk | contribs)
Jump to navigation Jump to search

Theorem

Suppose is a sequence of non-negative measurable functions, such that for all . Furthermore, . Then

[1]

Proof

First we prove that Failed to parse (unknown function "\math"): {\displaystyle \lim_{n\rightarrow +\infty} \int f_n \leq \int \lim_{n\rightarrow +\infty} f_n <\math>. Since <math> f_{n} \leq f_{n+1} } for all , we have and further .

Sending on LHS gives us the result.

Then we prove <math> \lim_{n\rightarrow +\infty} \int f_n \geq \int \lim_{n\rightarrow +\infty} f_n <\math>.

References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.2