Suppose { f n } {\displaystyle \{f_{n}\}} is a sequence of non-negative measurable functions, f n : X → [ 0 , + ∞ ] {\displaystyle f_{n}:X\to [0,+\infty ]} such that f n − 1 ≤ f n {\displaystyle f_{n-1}\leq f_{n}} for all n {\displaystyle n} . Furthermore, lim n → + ∞ f n = f ( = sup n f n ) {\displaystyle \lim _{n\to +\infty }f_{n}=f(=\sup _{n}f_{n})} . Then