Let X {\displaystyle X} be a nonempty set. An outer measure [1] on the set X {\displaystyle X} is a function μ ∗ : 2 X → [ 0 , ∞ ] {\displaystyle \mu ^{*}:2^{X}\to [0,\infty ]} such that
A set A ⊂ X {\displaystyle A\subset X} is μ ∗ {\displaystyle \mu ^{*}} -measurable if
μ ∗ ( E ) = μ ∗ ( E ∩ A ) + μ ∗ ( E ∖ A ) {\displaystyle \mu ^{*}(E)=\mu ^{*}(E\cap A)+\mu ^{*}(E\setminus A)}
for all E ⊂ X {\displaystyle E\subset X} .