Gradient flows in Hilbert spaces
Gradient Flows in Hilbert Spaces are generalizations of time-derivatives with a gradient constraint. Specifically, a gradient flow is a Hilbert Space valued function who's time derivative lies in some generalized collection of gradient vectors. Gradient flows are a key topic in the study of non-linear time evolution partial differential equations. In this exposition, we will draw from Ambrosio et al.'s resource Lectures on Optimal Transport and Evans' Partial Differential Equations.
Introduction
The heat equation is a classic example of a time evolution partial differential equation. In particular, the heat equation is a linear parabolic partial differential equation. Such PDEs are well understood and are solvable using several different approaches. One particularly interesting technique is to view the PDE as a Banach-space valued ODE in the time variable. In this case, we can try to understand how to write the solution of the PDE as a flow in time which is a generalization of the exponential function. The techniques which one implements to find such a solution ultimately results in the Hille-Yosida theorem, which gives necessary and sufficient conditions for an operator to be infinitesimal generator of a contraction semigroup of the given PDE[1]. In some sense, these ideas can be extended to non-linear time evolution PDEs, leading to the general notion of flows on Hilbert spaces. We will discuss in this article how the theory of flows can be used to yield existence of a solution of a "non-linear heat equation."
Definitions
Let be a Hilbert space with inner product with induced metric . Throughout this exposition, we assume that is proper, so that the domain on which it takes finite values, , is not empty.
First, we recall the notion of the subdifferential, rewritten from Ambrosio et al.'s definition[2].
The subdifferential of at is the collection,
Remark: observe that we are not assuming is convex, only that it is proper. In fact, Ambrosio et al. discusses the case when is -convex, which generalizes the notion of convexity. We have omitted that discussion for the sake of clarity and brevity. If is indeed convex, then the subdifferential becomes,
A gradient flow is a locally absolutely continuous function with the property that for almost every (with respect to Lebesgue measure)[2]. Note that the being locally absolutely continuous is necessary for the existence (almost everywhere) of [2]. It will be particularly useful to identify the starting point of a gradient flow , which is given by .
Main Existence Theorem
From Linear to Nonlinear Operators
Recall that the Hille-Yosida theorem states the following:
- Theorem[1] Let be a densely defined linear operator on a Banach space (note that need not be bounded, but we assume is closed). Denote as the resolvent set of . Then is the infinitesimal generator of a semigroup if and only if, for each , we have and
Using this result, we may view a linear time evolution PDE as a Banach space valued problem of the following form:
which has solution [1] . In the ODE above, denotes the linear differential operator in the original linear time evolution PDE.
This approach works well when is linear, but requires some significant modification in the case that is nonlinear. In particular, observe that the Hille-Yosida theorem makes use of the resolvent of the relevant linear operator. In some sense, the resolvent bypasses the problems that arise from the unboundedness of the linear operator; in particular, it makes sense to discuss power series expansions involving the resolvent. In the unbounded case, one must introduce a generalization of the resolvent.
In the notation of Ambrosio et al., the analogue of the resolvent used in the proof of the Brézis-Komura Theorem is where is a non-linear operator on a Hilbert Space [2]. Moreover, the existence argument in the Brézis-Komura Theorem requires a modification to the generalized resolvent of . This modification is the Yosida Regularization,[2]
where is some non-negative parameter. The Yosida Regularization, being Lipschitz as an operator on with Lipschitz constant , allows one to construct the starting point for a solution in the Brézis-Komura Theorem.[1]
Before we formulate the Brézis-Komura Theorem, we need to introduce convexity.
- Definition[3] Given we say that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:H \rigtharrow (-\infty,\infty]} is convex if Failed to parse (syntax error): {\displaystyle f - \frac{\lambda}^{2}|\cdot|^{2}.}
The Brézis-Komura Theorem
We restate the Brézis-Komura Theorem as is stated in Ambrosio et al.
- Theorem[2] Let be proper, convex, and lower-semicontinuous. Then for each , there is a unique contraction semigroup which forms a gradient flow starting at .
Example and Applications
As suggested by our previous discussion, the Brézis-Komura Theorem may be used to assert the existence of flows solving certain nonlinear time-evolution PDEs. Several nonlinear time-evolution PDEs and their solutions are discussed by both Ambrosio et al. and Evans. A simple example consists of a particular case of the so-called -Laplace equation[2] on , which seeks to find a solution to the heat-like equation . Motivated by the applicable variational formulation of this problem, one may consider the function whenever , with otherwise. Applying the Brézis-Komura Theorem yields a flow such that . Some care must be taken to show that the subdifferential of coincides with the right hand side of the expression for .
In general, the -Laplace equation is given by and is solved on . Note that the -Laplace equation is a generalization of the heat equation and we may recover the heat equation on when . In that case, the Brézis-Komura Theorem may be applied to the function whenever , with otherwise. Thus, we acquire the existence of a gradient flow which satisfies the heat equation.
The Brézis-Komura Theorem is also used to assert the existence of the Riemannian Heat Semigroup[2]. This forms the starting point for connecting optimal transport and ricci curvature.