Cantor ternary Function
if
is the Cantor set on [0,1], then the Cantor function c : [0,1] → [0,1] can be defined as[1]
![{\displaystyle c(x)={\begin{cases}\sum _{n=1}^{\infty }{\frac {a_{n}}{2^{n}}},&x=\sum _{n=1}^{\infty }{\frac {2a_{n}}{3^{n}}}\in {\mathcal {C}}\ \mathrm {for} \ a_{n}\in \{0,1\};\\\sup _{y\leq x,\,y\in {\mathcal {C}}}c(y),&x\in [0,1]\setminus {\mathcal {C}}.\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/040ba3dfa2d974ebb3210b4cc6b3fa1cb9c9ad97)
Properties of Cantor Functions
- Cantor Function is continuous everywhere, zero derivative almost everywhere.
- lack of absolute continuity.
- Monotonicity
- Its value goes from 0 to 1 as its argument reaches from 0 to 1.
Cantor Function Alternative
The Cantor Function can be constructed iteratively using homework construction.[2]
References
- ↑ Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M. (2006). Expositiones Mathematicae. Elsevier BV. 24 (1): 1–37.
- ↑ Craig, Katy. MATH 201A HW 5. UC Santa Barbara, Fall 2020.