In measure theory, the dominated convergence theorem is a cornerstone of Lebesgue integration. It can be viewed as a culmination of all efforts, and is a general statement about the interplay between limits and integrals.
Theorem Statement
Consider the measure space . Suppose is a sequence in such that
- a.e
- there exists such that a.e. for all
Then and . [1]
Proof of Theorem
is a measurable function in the sense that it is a.e. equal to a measurable function, since it is the limit of except on a null set. Also a.e., so .
Now we have a.e. and a.e. to which we may apply Fatou's lemma to obtain
,
where the equalities follow from linearity of the integral and the inequality follows from Fatou's lemma. We similarly obtain
.
Since , these imply
from which the result follows. [1] [2]
References
- ↑ 1.0 1.1 Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.3
- ↑ Craig, Katy. MATH 201A Lecture 15. UC Santa Barbara, Fall 2020.