Geodesics and generalized geodesics
Jump to navigation
Jump to search
Introduction
There are many ways that we can describe Wasserstein metric. One of them is to characterize absolutely continuos curves (AC)(p.188[1]) and provide a dynamic formulation of the special case Namely, it is possible to see as an infimum of the lengts of curves that satisfy Continuity equation
().
Geodesics
- Definition. In a length space, a curve is said to be constant speed geodesic between and in if it satisfies
for all
Statement of Theorem
- Theorem.(Benamow-Brenier)[1] Let ,
Generalization
It is possible to generalize the previous theorem and theory to metrics. More about that could be seen in the book [2].
However, it is possible to generalize theorem for a different kind of geodesics [3].
References
- ↑ 1.0 1.1 F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1, pages 202-207
- ↑ [https://link.springer.com/book/10.1007/b137080 L.Ambrosio, N.Gilgi, G.Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Chapter 7.2., pages 158-160]
- ↑ F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1, pages 275-276