There are many ways that we can characterize Wasserstein metric ... [1]
The main idea is to characterize absolutely (AC) curves ...
W 2 2 ( μ , ν ) = inf ( μ ( t ) . ν ( t ) ) { ∫ 0 1 | v ( , t ) | L 2 ( μ ( t ) ) 2 d t , ∂ t μ + ∇ ( v μ ) = 0 , μ ( 0 ) = μ , μ ( 1 ) = ν } {\displaystyle W_{2}^{2}(\mu ,\nu )=\inf _{(\mu (t).\nu (t))}\{\int _{0}^{1}|v(,t)|_{L^{2}(\mu (t))}^{2}dt,\quad \partial _{t}\mu +\nabla (v\mu )=0,\mu (0)=\mu ,\mu (1)=\nu \}}