Modes of Convergence
Jump to navigation
Jump to search
Relevant Definitions[1]
Denote our measure space as . Note that a property p(x) holds for almost every if the set has measure zero.
- A sequence of measurable functions converges pointwise if for all .
- A sequence of measureable functions converges uniformly if .
- A sequence of measurable functions converges to pointwise almost everywhere if for almost every , or .
- A sequence of measurable functions converges in if
check Convergence in Measure for convergence in measure.
Relevant Properties [2]
- through uniform convergence implies through pointwise convergence, which in turn implies pointwise a.e. convergence.
- through convergence implies through pointwise a.e convergence up to a subsequence. This follows because convergence means in measure, and that in turn sugggests there exists a subsequence Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Double subscripts: use braces to clarify"): {\displaystyle f_{n}_{k}} such that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Double subscripts: use braces to clarify"): {\displaystyle f_{n}_{k}\to f} pointwise a.e.
- Pointwise a.e. convergence, equipped with dominating function, implies in . To see example of why we need a dominating function, read Dominated Convergence Theorem, particularly applications of the theorem.
- Convergence in Measure lists relationships between convergence in measure and other forms of convergence.