Measures

From Optimal Transport Wiki
Revision as of 04:39, 17 December 2020 by Tomas (talk | contribs)
Jump to navigation Jump to search

This page is under construction.

Definition

Let be a set equipped with a -algebra . A measure on (also referred to simply as measure on if is understood) is a function that satisfies the following criteria:

  1. ,
  2. Let be a disjoint sequence of sets such that each . Then, .

If the previous conditions are satisfied, the structure is called a measure space.

Properties

Let be a measure space.

  1. Countable Additivity: Let be a finite disjoint sequence of sets such that each . Then, . This follows directly from the defintion of measures by taking .
  2. Monotonicity: Let such that . Then, .
  3. Subadditivity: Let . Then, .
  4. Continuity from Below: Let such that . Then, .
  5. Continuity from Above: Let such that and for some . Then, .

Examples

.

References

.