Cantor ternary Function
if is the Cantor set on [0,1], then the Cantor function c : [0,1] → [0,1] can be defined as[1]
Properties of Cantor Functions
- Cantor Function is continuous everywhere, zero derivative almost everywhere.
- lack of absolute continuity.
- Monotonicity
- Its value goes from 0 to 1 as its argument reaches from 0 to 1.
Cantor Function Alternative
The Cantor Function can be constructed iteratively using homework construction.[2]
References
- ↑ Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M. (2006). Expositiones Mathematicae. Elsevier BV. 24 (1): 1–37.
- ↑ Craig, Katy. MATH 201A HW 5. UC Santa Barbara, Fall 2020.