Caratheodory's Theorem
Jump to navigation
Jump to search
Statement
Consider an out measure on . Define
.
Then is a -algebra and is a measure on .
Proof
First, observe that is closed under complements due to symmetry in the meaning of -measurability. Now, we show if then .
Suppose . Then
and by subadditivity
But certainly, since the inequality in the other direction also holds, and we conclude
hence and we conclude is an algebra.