Let and be measure spaces. A map is -measurable if for all
Examples of measurable functions
- A function is called a Lebesgue measurable function if is - measurable, where is the class of Lebesgue measurable sets and is Borel -algebra.
- A function is called Borel measurable if is -measurable.
Basic theorems of measurable functions
- Let and be measure spaces. Suppose that is generated by a set . A map is -measurable if for all
- Let , , and be measure spaces. If a map is -measurable and is -measurable, then is -measurable. In particular, if is Borel measurable and is Lebesgue measurable, then is Lebesgue measurable.
- Let , , , and be measure spaces. If a map is -measurable and is -measurable, then is -measurable when