Let X {\displaystyle X} be a metric space (or more generally a topological space). A function f : X → R ∪ { + ∞ } {\displaystyle f:X\to \mathbb {R} \cup \{+\infty \}} is lower semicontinuous if
is open in X {\displaystyle X} for all a ∈ R {\displaystyle a\in \mathbb {R} } .[1]