Geodesics and generalized geodesics: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 4: Line 4:


== Geodesics ==
== Geodesics ==
: '''Definition.''' A metric space <math> (X,d) </math> is called a length space if it holds




: '''Definition.''' In a length space, a curve <math> l:[0,1]\rightarrow X </math> is said to be constant speed geodesic between <math> \omega(0)</math> and <math> \omega(1)</math> in <math> X </math> if it satisfies  
: '''Definition.''' In a length space, a curve <math> l:[0,1]\rightarrow X </math> is said to be constant speed geodesic between <math> \omega(0)</math> and <math> \omega(1)</math> in <math> X </math> if it satisfies  


<math> d(\omega(s),\omega(t))=|t-s|d(\omega(0),\omega(1)) </math> for all <math> t,s \in [0,1]</math>
        <math> d(\omega(s),\omega(t))=|t-s|d(\omega(0),\omega(1)) </math> for all <math> t,s \in [0,1]</math>


== Statement of Theorem==
== Statement of Theorem==

Revision as of 12:27, 11 June 2020

Introduction

There are many ways that we can describe Wasserstein metric. One of them is to characterize absolutely continuos curves (AC)(p.188[1]) and provide a dynamic formulation of the special case Namely, it is possible to see as an infimum of the lengts of curves that satisfy Continuity equation
().

Geodesics

Definition. A metric space is called a length space if it holds


Definition. In a length space, a curve is said to be constant speed geodesic between and in if it satisfies
         for all 

Statement of Theorem

Theorem.(Benamow-Brenier)[1] Let ,

Generalization

It is possible to generalize the previous theorem and theory to metrics. More about that could be seen in the book [2].

However, it is possible to generalize theorem for a different kind of geodesics [3].

References