Geodesics and generalized geodesics: Difference between revisions
Jump to navigation
Jump to search
Line 14: | Line 14: | ||
== Generalization == | == Generalization == | ||
It is possible to generalize the previous theorem and theory to <math>W_{p} </math> metrics. More about that could be seen in the book <ref name="Ambrosio" />. <br> | It is possible to generalize the previous theorem and theory to <math>W_{p} </math> metrics. More about that could be seen in the book <ref name="Ambrosio" />. <br> | ||
However, it is possible to generalize theorem also to generalized geodesics <ref name="Santambrogio1" />. | |||
= References = | = References = |
Revision as of 12:09, 11 June 2020
Introduction
There are many ways that we can describe Wasserstein metric. One of them is to characterize absolutely continuos curves (AC)(p.188[1]) and provide a dynamic formulation of the special case Namely, it is possible to see as an infimum of the lengts of curves that satisfy Continuity equation
().
Geodesics
Constant speed geodesic ...
Statement of Theorem
- Theorem.(Benamow-Brenier)[1] Let ,
Generalization
It is possible to generalize the previous theorem and theory to metrics. More about that could be seen in the book [2].
However, it is possible to generalize theorem also to generalized geodesics [3].
References
- ↑ 1.0 1.1 F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1, pages 202-207
- ↑ [https://link.springer.com/book/10.1007/b137080 L.Ambrosio, N.Gilgi, G.Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Chapter 7.2., pages 158-160]
- ↑ F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1, pages 275-276