Geodesics and generalized geodesics: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 21: | Line 21: | ||
<ref name="Santambrogio"> [https://link-springer-com.proxy.library.ucsb.edu:9443/book/10.1007/978-3-319-20828-2 F. Santambrogio, ''Optimal Transport for Applied Mathematicians'', Chapter 1, pages 202-207] </ref> | <ref name="Santambrogio"> [https://link-springer-com.proxy.library.ucsb.edu:9443/book/10.1007/978-3-319-20828-2 F. Santambrogio, ''Optimal Transport for Applied Mathematicians'', Chapter 1, pages 202-207] </ref> | ||
<ref name="Santambrogio1"> [https://link-springer-com.proxy.library.ucsb.edu:9443/book/10.1007/978-3-319-20828-2 F. Santambrogio, ''Optimal Transport for Applied Mathematicians'', Chapter 1, pages 275-276] </ref> | |||
<ref name="Ambrosio"> [https://link.springer.com/book/10.1007/b137080 L.Ambrosio, N.Gilgi, G.Savaré, '' | <ref name="Ambrosio"> [https://link.springer.com/book/10.1007/b137080 L.Ambrosio, N.Gilgi, G.Savaré, '' |
Revision as of 12:04, 11 June 2020
Introduction
There are many ways that we can describe Wasserstein metric. One of them is to characterize absolutely continuos curves (AC)(p.188[1]) and provide a dynamic formulation of the special case Namely, it is possible to see as an infimum of the lengts of curves that satisfy Continuity equation
().
Geodesics
Constant speed geodesic ...
Statement of Theorem
- Theorem.(Benamow-Brenier)[1] Let ,
Generalization
case from ...[2]
References
- ↑ 1.0 1.1 F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1, pages 202-207
- ↑ [https://link.springer.com/book/10.1007/b137080 L.Ambrosio, N.Gilgi, G.Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Chapter 7.2., pages 158-160]
Cite error: <ref>
tag with name "Santambrogio1" defined in <references>
is not used in prior text.