Geodesics and generalized geodesics: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 9: Line 9:
: '''Theorem.'''(Benamow-Brenier)<ref name=Santambrogio /> Let <math> \mu, \nu \in P_{2}(R^{d}) </math>, <br>
: '''Theorem.'''(Benamow-Brenier)<ref name=Santambrogio /> Let <math> \mu, \nu \in P_{2}(R^{d}) </math>, <br>
<math> W_{2}^{2}(\mu, \nu)=\inf_{(\mu(t).\nu(t))} \{\int_{0}^{1} |v(,t)|_{L^{2}(\mu(t))}^{2}dt, \quad \partial_{t}\mu+\nabla(v\mu)=0, \mu(0)=\mu, \mu(1)=\nu \} </math>
<math> W_{2}^{2}(\mu, \nu)=\inf_{(\mu(t).\nu(t))} \{\int_{0}^{1} |v(,t)|_{L^{2}(\mu(t))}^{2}dt, \quad \partial_{t}\mu+\nabla(v\mu)=0, \mu(0)=\mu, \mu(1)=\nu \} </math>
== Generalization ==


= References =
= References =

Revision as of 12:31, 8 June 2020

Introduction

There are many ways that we can characterize Wasserstein metric ... [1]

The main idea is to characterize absolutely (AC) curves ...

Statement of Theorem

Theorem.(Benamow-Brenier)[1] Let ,

Generalization

References