Kantorovich Dual Problem (for general costs): Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 6: Line 6:


(Kantorovich Duality) Let X and Y be Polish spaces, let <math>\mu \in \mathcal{P}(X)</math> and <math>\nu \in \mathcal{P}(Y)</math>, and let a cost function <math> c:X \times Y \rightarrow[0,+\infty] </math> be lower semi-continuous.
(Kantorovich Duality) Let X and Y be Polish spaces, let <math>\mu \in \mathcal{P}(X)</math> and <math>\nu \in \mathcal{P}(Y)</math>, and let a cost function <math> c:X \times Y \rightarrow[0,+\infty] </math> be lower semi-continuous.
Whenever <math> \pi \in \mathcal{P}(X \times Y) </math> and <math> (\varphi, \psi) \in L^{1}(d\mu) \times L^{1}(d\nu) </math>, define  
Whenever <math> \pi \in \mathcal{P}(X \times Y) </math> and <math> (\varphi, \psi) \in L^{1}(d\mu) \times L^{1}(d\nu) </math>, define \newline
<math> I[\pi]= \int_{X\times Y} c(x,y) d\pi(x,y), \quad J(\varphi,\psi)=\int_{X}\varphi(x)d\mu(x)+\int_{Y}\psi(y) d\nu(y) </math> ...
<math> I[\pi]= \int_{X\times Y} c(x,y) d\pi(x,y), \quad J(\varphi,\psi)=\int_{X}\varphi(x)d\mu(x)+\int_{Y}\psi(y) d\nu(y) </math>.


==Proof of Theorem==
==Proof of Theorem==

Revision as of 22:36, 16 May 2020

Introduction

The main advantage of Kantorovich Problem, in comparison to Monge problem, is in the convex constraint property. It is possible to formulate the dual problem.

Statement of Theorem

(Kantorovich Duality) Let X and Y be Polish spaces, let and , and let a cost function be lower semi-continuous. Whenever and , define \newline .

Proof of Theorem

References


[1]

[2]

</ references>

  1. C. Villani, Topics in Optimal Transportation, Chapter 1. (pages 17-21)
  2. https://link-springer-com.proxy.library.ucsb.edu:9443/book/10.1007/978-3-319-20828-2 F. Santambrogio, Optimal Transport for Applied Mathematicians, Chapter 1.] (pages 9-16)