The continuity equation and Benamour Brenier formula: Difference between revisions
Line 49: | Line 49: | ||
: ''Sketch of the Proof.'' | : ''Sketch of the Proof.'' | ||
Proving existence, or checking that <math> \mu_{t} </math> | Proving existence, or checking that <math> \mu_{t} </math> satisfies the continuity equation in a sense of the weak solution is straightforward, using change of variables. However, resolving the uniqueness of this solution when it is absolutely continuous with respect to Lebesgue measure requires narrowing a test function space, using distributional solution. Hence, we can control the flow <math>X_{t}</math> in a better way, and using a linear transport equation solution, we can prove the uniqueness of solution of our continuity equation. <math> \qed </math> | ||
== Applications == | == Applications == |
Revision as of 07:48, 26 February 2022
Introduction
The continuity equation is an important equation in many fields of science, for example, electromagnetism, computer vision, fluid dynamics etc. However, in the field of optimal transport, the formulation from fluid dynamics is of a large significance. This form helps to explain the dynamic formulation of special cases of Wasserstein metric, and we will focus in this direction. For more general information about the continuity equation, look at the article Continuity equation.
Continuity equation in fluid dynamics
First, because of the intuition, we will introduce the definition of the continuity equation in fluid mechanics. The exposition in this section will follow the book by Chorin and Marsden[1].
Suppose that mass of our fluid is conserved, through time. Denote as a density function, representing the mass-density of fluid, and as a velocity of particle at position , at time . Then, for any subspace of we have:
In this section, we assume both density function and particle velocity are smooth enough. Hence, after differentiating under the integral and applying the Divergence Theorem, we get:
Finally, we conclude that:
which implies, since is arbitrary, that:
The last equation is the continuity equation in fluid dynamics, written in the differential form. We use the equation in this form in optimal transport.
Continuity equation in optimal transport
The previous discussion assumed that the density function was smooth, which is not true of the general measures we consider in optimal transport. Even when a measure is absolutely continuous with respect to Lebesgue measure, which we write with a mild abuse of notation as , does not have to be smooth. So, we need to state a proper weak formulation of the continuity equation. Smooth functions satisfy all the cases below.
Here, we will present definitions and reasoning from book by F.Santambrogio[2].
From this point, we are looking at the following equation:
We will give two different notions of solutions to the continuity equation.
- Distributional solution. All the measures we are interested in satisfy , and solve continuity equation in a distributional sense, namely
- for all bounded Lipschitz functions , where is a bounded domain or the whole space , and . We assume no-flux condition in this case, namely on the boundary This notion of solution is called a distributional solution.
The main goal of the classical optimal transport theory is how to find the least expensive way to move one measure to the another one. For more information, look at Monge Problem.So, we have to impose initial and terminal conditions on measures, for example , and Then, our equation becomes for all
- Weak solution. Another way to interpret solutions to the continuity equation is to assume that function is absolutely continuous, and for a.e. it holds: for all test functions This kind of solution is called a weak solution.
Some connections between these two types of solutions are given in the following propositions.
- Proposition 1., (p.124,[2]) Distributional and weak solutions are equivalent. Every weak solution is a distributional solution. On the other hand, every distributional solution admits a representative (a.e. equal), that is weakly continuous and a weak solution.
- Proposition 2.,(p.124,[2]) Let be the Lipschitz function in and be the Lipschitz function in Suppose that the continuity equation is satisfied in the weak sense. Then it is satisfied in a.e. sense.
The following theorem will provide us with existence and uniqueness of the continuity equation solution. For simplicity, we will assume that
- Theorem.[2] Let measurable function be a Lipschitz continuous in , uniformly in , and uniformly bounded. Suppose that flow of the classical ODE problem, with function exists. Then, for any probability measure , push-forward measures satisfy the continuity equation with the initial condition . Moreover, for all measures absolutely continuous with respect to Lebesgue measure, the previous solution is the only solution the continuity equation admits.
- Sketch of the Proof.
Proving existence, or checking that satisfies the continuity equation in a sense of the weak solution is straightforward, using change of variables. However, resolving the uniqueness of this solution when it is absolutely continuous with respect to Lebesgue measure requires narrowing a test function space, using distributional solution. Hence, we can control the flow in a better way, and using a linear transport equation solution, we can prove the uniqueness of solution of our continuity equation. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qed }
Applications
The following theorem can be found at the book by L.Ambrosio, E.Brué, and D.Semola[3].
- Theorem (Benamou-Brenier Formula).[2] Let . Then
This formula is important for defining Riemannian structure. You can see more at Formal Riemannian Structure of the Wasserstein metric.
In addition, using the continuity equation we can describe geodesics in the Wasserstein space. For more details look at Geodesics and generalized geodesics.