Lebesgue-Stieljes Measures: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
:<math>\mu_F^{*}(A) = \inf\left\{\sum_i \mu_F^{*}(\left(a, b\right]) \ : \  A\subset \bigcup_i \left(a, b\right] \right\}</math>
:<math>\mu_F^{*}(A) = \inf\left\{\sum_i \mu_F^{*}(\left(a, b\right]) \ : \  A\subset \bigcup_i \left(a, b\right] \right\}</math>


where <math> \mu_F^{*}(\left(a, b\right]) = F(b) - F(a) </math> and the infimum taken over all coverings of A by countably many semiopen intervals. By  Carathéodory's Theorem, we know that the measure <math>\mu_F := \mu_F^{*} \mid </math> arising from the outer measure <math>\mu_F := mu_F^{*} </math>
where <math> \mu_F^{*}(\left(a, b\right]) = F(b) - F(a) </math> and the infimum taken over all coverings of A by countably many semiopen intervals. By  Carathéodory's Theorem, we know that the measure <math>\mu_F := \mu_F^{*} \mid </math> arising from the outer measure <math>\mu_F := mu_F^{*} </math> {{math|''μ<sub>g</sub>''}}

Revision as of 06:11, 19 December 2020

Given nondecreasing and right contiuous, define an outer measure by

where and the infimum taken over all coverings of A by countably many semiopen intervals. By Carathéodory's Theorem, we know that the measure arising from the outer measure Template:Math