Absolutely Continuous Measures: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Definitions== | ==Definitions== | ||
Let <math> (X,\mathcal{M},\mu_1) </math> be a measure space. The measure <math> \mu_2:\mathcal{M}\rightarrow [0,\infty] </math> is said to be absolutely continuous with respect to the measure <math> \mu_1 </math> if we have that <math> \mu_2(T) = 0 </math> for <math> T\in \mathcal{M}</math> such that <math> \mu_1(T) = 0</math> (see [1]). In this case, we denote that <math> mu_2</math> is absolutely continuous with respect to <math> \mu_1</math> by writing <math> \mu_2 | Let <math> (X,\mathcal{M},\mu_1) </math> be a measure space. The measure <math> \mu_2:\mathcal{M}\rightarrow [0,\infty] </math> is said to be absolutely continuous with respect to the measure <math> \mu_1 </math> if we have that <math> \mu_2(T) = 0 </math> for <math> T\in \mathcal{M}</math> such that <math> \mu_1(T) = 0</math> (see [1]). In this case, we denote that <math> \mu_2</math> is absolutely continuous with respect to <math> \mu_1</math> by writing <math> \mu_2 \ll \mu_1 </math>. | ||
==Examples== | ==Examples== |
Revision as of 17:58, 18 December 2020
Definitions
Let be a measure space. The measure is said to be absolutely continuous with respect to the measure if we have that for such that (see [1]). In this case, we denote that is absolutely continuous with respect to by writing .
Examples
Recall that if is a measurable function, then the set function for is a measure on .
Properties
References
[1]: Taylor, M.E. "Measure Theory and Integration". 50-51.