Modes of Convergence: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 8: Line 8:
== Relevant Properties <ref name="Craig, Katy">Craig, Katy. ''MATH 201A Lecture 18''. UC Santa Barbara, Fall 2020.</ref>==
== Relevant Properties <ref name="Craig, Katy">Craig, Katy. ''MATH 201A Lecture 18''. UC Santa Barbara, Fall 2020.</ref>==
* <math>f_n \to f</math> through    uniform Convergence <math>\to </math><math> f_n \to f</math> through  pointwise convergence  <math> \to </math> <math>f_n \to f</math> pointwise a.e. convergence
* <math>f_n \to f</math> through    uniform Convergence <math>\to </math><math> f_n \to f</math> through  pointwise convergence  <math> \to </math> <math>f_n \to f</math> pointwise a.e. convergence
==Reference==
* <math>f_n \to f</math> through  <math> L^1</math> convergence <math>\to  </math> <math>f_n \to f</math>  through pointwise a.e convergence up to a subsequence
* <math>f_n \to f</math> through  <math> L^1</math> convergence <math>\to  </math> <math>f_n \to f</math>  through pointwise a.e convergence up to a subsequence
* <math>f_n \to f</math> Pointwise a.e. convergence, equipped with dominating function, implies <math>f_n \to f</math>  in  <math>L^1</math>.
* <math>f_n \to f</math> Pointwise a.e. convergence, equipped with dominating function, implies <math>f_n \to f</math>  in  <math>L^1</math>.

Revision as of 09:23, 18 December 2020

Relevant Definitions[1]

Denote our measure space as . Note that a property p(x) holds for almost every if the set has measure zero.

  • A sequence of functions converges pointwise if for all .
  • A sequence of functions converges uniformly if .
  • A sequence of measurable functions converges to pointwise almost everywhere if for almost every , or .
  • A sequence of measurable functions converges in if

Relevant Properties [2]

  • through uniform Convergence through pointwise convergence pointwise a.e. convergence

Reference

  • through convergence through pointwise a.e convergence up to a subsequence
  • Pointwise a.e. convergence, equipped with dominating function, implies in .
  1. Craig, Katy. MATH 201A Lecture 17. UC Santa Barbara, Fall 2020.
  2. Craig, Katy. MATH 201A Lecture 18. UC Santa Barbara, Fall 2020.