Dominated Convergence Theorem: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
In measure theory, the dominated convergence theorem is a cornerstone of Lebesgue integration. It can be viewed as a culmination of all efforts, and is a general statement about the interplay between limits and integrals.
In measure theory, the dominated convergence theorem is a cornerstone of Lebesgue integration. It can be viewed as a culmination of all efforts, and is a general statement about the interplay between limits and integrals.
==Theorem Statement==
==Theorem Statement==
Consider the measure space <math> (X,\mathcal{M},\lambda) </math>. Suppose <math>\{f_n\}</math> is a sequence in <math>L^1(\lambda)</math> such that
Consider the measure space <math> (X,\mathcal{M},\lambda) </math>. Suppose <math>\{f_n\}</math> is a sequence in <math>L^1(\lambda)</math> such that
# <math>f_n \to f</math> a.e
# <math>f_n \to f</math> a.e
# there exists <math>g \in L^1(\lambda)</math> such that <math>|f_n| \leq g</math> a.e. for all <math>n \in \mathbb{N}</math>
# there exists <math>g \in L^1(\lambda)</math> such that <math>|f_n| \leq g</math> a.e. for all <math>n \in \mathbb{N}</math>
Then <math>f \in L^1(\lambda)</math> and <math>\int f = \lim_{n \to \infty} \int f_n</math>.
Then <math>f \in L^1(\lambda)</math> and <math>\int f = \lim_{n \to \infty} \int f_n</math>. <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', §2.3 </ref>


==Proof of Theorem==
==Proof of Theorem==
Line 20: Line 21:


<math>\limsup_{n \to \infty} \int f_n \leq \int f \leq \liminf_{n \to \infty} \int f_n</math> from which the result follows.
<math>\limsup_{n \to \infty} \int f_n \leq \int f \leq \liminf_{n \to \infty} \int f_n</math> from which the result follows.
==References==

Revision as of 08:55, 18 December 2020

In measure theory, the dominated convergence theorem is a cornerstone of Lebesgue integration. It can be viewed as a culmination of all efforts, and is a general statement about the interplay between limits and integrals.

Theorem Statement

Consider the measure space . Suppose is a sequence in such that

  1. a.e
  2. there exists such that a.e. for all

Then and . [1]

Proof of Theorem

is a measurable function in the sense that it is a.e. equal to a measurable function, since it is the limit of except on a null set. Also a.e., so .

Now we have a.e. and a.e. to which we may apply Fatou's lemma to obtain

,

where the equalities follow from linearity of the integral and the inequality follows from Fatou's lemma. We similarly obtain

.

Since , these imply

from which the result follows.

References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.3