Modes of Convergence: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 6: Line 6:
*A sequence of measurable functions <math>f_n</math> converges in <math>L^1</math> if <math>\int |f_n - f| \to 0.</math>
*A sequence of measurable functions <math>f_n</math> converges in <math>L^1</math> if <math>\int |f_n - f| \to 0.</math>


== Relevant Properties ==
== Relevant Properties <ref name="Craig, Katy">Craig, Katy. ''MATH 201A Lecture 18''. UC Santa Barbara, Fall 2020.</ref>
==
* <math>f_n \to f</math> through    uniform Convergence <math>\to </math><math> f_n \to f</math> through  pointwise convergence  <math> \to </math> <math>f_n \to f</math> pointwise a.e. convergence
* <math>f_n \to f</math> through    uniform Convergence <math>\to </math><math> f_n \to f</math> through  pointwise convergence  <math> \to </math> <math>f_n \to f</math> pointwise a.e. convergence
* <math>f_n \to f</math> through  <math> L^1</math> convergence <math>\to  </math> <math>f_n \to f</math>  through pointwise a.e convergence up to a subsequence
* <math>f_n \to f</math> through  <math> L^1</math> convergence <math>\to  </math> <math>f_n \to f</math>  through pointwise a.e convergence up to a subsequence
* <math>f_n \to f</math> Pointwise a.e. convergence equipped with dominating function implies <math>f_n \to f</math>  <math>L^1</math> convergence.<ref name="Craig, Katy">Craig, Katy. ''MATH 201A Lecture 18''. UC Santa Barbara, Fall 2020.</ref>
* <math>f_n \to f</math> Pointwise a.e. convergence equipped with dominating function implies <math>f_n \to f</math>  <math>L^1</math> convergence.

Revision as of 07:45, 18 December 2020

Relevant Definitions[1]

Denote our measure space as . Note that a property p(x) holds for almost every if the set has measure zero.

  • A sequence of functions converges pointwise if for all .
  • A sequence of functions converges uniformly if .
  • A sequence of measurable functions converges to pointwise almost everywhere if for almost every , or .
  • A sequence of measurable functions converges in if

== Relevant Properties [2]

==
  • through uniform Convergence through pointwise convergence pointwise a.e. convergence
  • through convergence through pointwise a.e convergence up to a subsequence
  • Pointwise a.e. convergence equipped with dominating function implies convergence.
  1. Craig, Katy. MATH 201A Lecture 17. UC Santa Barbara, Fall 2020.
  2. Craig, Katy. MATH 201A Lecture 18. UC Santa Barbara, Fall 2020.