Measures: Difference between revisions
No edit summary |
|||
Line 42: | Line 42: | ||
'''Theorem''' <em>Suppose that <math>(X, \mathcal{M}, \mu)</math> is a measure space. Let <math>\mathcal{N} = \left\{N \in \mathcal{M} : \mu(N) = 0\right\}</math> and <math>\overline{\mathcal{M}} = \left\{E \cup F : E \in \mathcal{M} \text{ and } F \subseteq N \text{ for some } N \in \mathcal{N}\right\}</math>. Then, <math>\overline{\mathcal{M}}</math> is a <math>\sigma</math>-algebra, and there is a unique extension <math>\overline{\mu}</math> of <math>\mu</math> to a complate measure on <math>\overline{\mathcal{M}}</math>.</em> | '''Theorem''' <em>Suppose that <math>(X, \mathcal{M}, \mu)</math> is a measure space. Let <math>\mathcal{N} = \left\{N \in \mathcal{M} : \mu(N) = 0\right\}</math> and <math>\overline{\mathcal{M}} = \left\{E \cup F : E \in \mathcal{M} \text{ and } F \subseteq N \text{ for some } N \in \mathcal{N}\right\}</math>. Then, <math>\overline{\mathcal{M}}</math> is a <math>\sigma</math>-algebra, and there is a unique extension <math>\overline{\mu}</math> of <math>\mu</math> to a complate measure on <math>\overline{\mathcal{M}}</math>.</em> | ||
==Borel and Lebesgue Measures== | |||
. | |||
==References== | ==References== | ||
# Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition. | # Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition. | ||
# Craig, Katy. MATH 201A Lectures 4-5, 7-8. UC Santa Barbara, Fall 2020. | # Craig, Katy. MATH 201A Lectures 4-5, 7-8. UC Santa Barbara, Fall 2020. |
Revision as of 05:55, 18 December 2020
Measures provide a method for mapping sets to a values in the interval . The resulting value can interpreted as the size of the subset. From a geometric perspective, the measure of a set can be viewed as the generalization of length, area, and volume.
Definition
Let be a set and let be a -algebra. Tbe structure is called a measurable space and each set in is called a measurable set. A measure on (also referred to simply as a measure on if is understood) is a function that satisfies the following criteria:
- ,
- Let be a disjoint sequence of sets such that each . Then, .
If the previous conditions are satisfied, the structure is called a measure space.
Additional Terminology
Let be a measure space.
- The measure is called finite if .
- Let . If there exist such that and (for all ), then is -finite for .
- If is -finite for , then is called -finite.
- Let be the collection of all the sets in with infinite -measure. The measure is called semifinite if there exists such that and , for all .
Properties
Let be a measure space.
- Finite Additivity: Let be a finite disjoint sequence of sets such that each . Then, . This follows directly from the defintion of measures by taking .
- Monotonicity: Let such that . Then, .
- Subadditivity: Let . Then, .
- Continuity from Below: Let such that . Then, .
- Continuity from Above: Let such that and for some . Then, .
Examples
- Let be a non-empty set and . Let be any function from to . Given , define . Then, the function defined by is a measure. This measure has the following properties:
- The measure is semifinite if and only if for every .
- The measure is -finite if and only if is semifinite and is countable for every .
There are special cases of this measure that are frequently used:
- When fixing , the resulting measure is referred to as the counting measure.
- Let be fixed. By defining , the resulting measure is referred to as the point mass measure or the Dirac measure.
- Let be an uncountable set. Let be the -algebra of countable or co-cocountable sets of . The function defined as is a measure.
- Let be an infinite set. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M} = 2^X} . The function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu: 0 \rightarrow [0, +\infty]} defined as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(E) = \begin{cases}0, E\text{ is finite}\\+\infty, E\text{ is infinite}\end{cases}} is not a measure. To verify that it is not a measure, it is sufficient to take Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X = \mathbb{N}} , and note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k = 1}^{\infty} \mu\left(\{k\}\right) = 0 \neq +\infty = \mu\left(\mathbb{N}\right) = \mu\left(\cup_{k = 1}^{\infty} \{k\}\right)} . In other words. the countable additivity property is not satisfied. However, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} does satisfy the finite additivity property.
Complete Measures
Consider a measure space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X, \mathcal{M}, \mu)} . A set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \in \mathcal{M}} is called a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} -null set (or simply null set) if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(E) = 0} . A property Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)} holds Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} -almost everywhere (or simply almost everywhere) if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N = \left\{x \in X : P(x) \text{ does not hold}\right\}} satisfies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \in \mathcal{M}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(N) = 0} .
A measure space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X, \mathcal{M}, \mu)} is called complete if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}} contains all subsets of its null sets. An incomplete measure space can be constructed by taking Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X = \{a. b, c\}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M} = \{\emptyset, \{a\}, \{b, c\}, X\}} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(E) = \begin{cases}0, E \neq \{a\}\\1, E = \{a\}\end{cases}} . The set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{b, c\}} is a null set in this case, but Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{b\} \notin \mathcal{M}} .
Given an incomplete measure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X, \mathcal{M}, \mu)} , the following theorem guarantees that a complete measure space this measure space can be extended to a complete measure space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X, \overline{\mathcal{M}}, \overline{\mu})} . The measure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mu}} is called the completion of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{M}}} is called the completion of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}} with respect to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} .
Theorem Suppose that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X, \mathcal{M}, \mu)} is a measure space. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{N} = \left\{N \in \mathcal{M} : \mu(N) = 0\right\}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{M}} = \left\{E \cup F : E \in \mathcal{M} \text{ and } F \subseteq N \text{ for some } N \in \mathcal{N}\right\}} . Then, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{M}}} is a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} -algebra, and there is a unique extension Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mu}} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} to a complate measure on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{M}}} .
Borel and Lebesgue Measures
.
References
- Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition.
- Craig, Katy. MATH 201A Lectures 4-5, 7-8. UC Santa Barbara, Fall 2020.