Measures: Difference between revisions
Line 35: | Line 35: | ||
Consider a measure space <math>(X, \mathcal{M}, \mu)</math>. A set <math>E \in \mathcal{M}</math> is called a <math>\mu</math>-'''null set''' (or simply '''null set''') if <math>\mu(E) = 0</math>. A property <math>P(x)</math> holds <math>\mu</math>-'''almost everywhere''' (or simply '''almost everywhere''') if <math>N = \left\{x \in X : P(x) \text{ does not hold}\right\}</math> satisfies <math>N \in \mathcal{M}</math> and <math>\mu(N) = 0</math>. | Consider a measure space <math>(X, \mathcal{M}, \mu)</math>. A set <math>E \in \mathcal{M}</math> is called a <math>\mu</math>-'''null set''' (or simply '''null set''') if <math>\mu(E) = 0</math>. A property <math>P(x)</math> holds <math>\mu</math>-'''almost everywhere''' (or simply '''almost everywhere''') if <math>N = \left\{x \in X : P(x) \text{ does not hold}\right\}</math> satisfies <math>N \in \mathcal{M}</math> and <math>\mu(N) = 0</math>. | ||
A measure is called '''complete''' if <math>\mathcal{M}</math> | A measure space <math>(X, \mathcal{M}, \mu)</math> is called '''complete''' if <math>\mathcal{M}</math> contains all subsets of its null sets. An incomplete measure space can be constructed by taking <math>X = \{a. b, c\}</math> and <math>\mathcal{M} = \{\emptyset, \{a\}, \{b, c\}, X\}</math> with <math>\mu(E) = \begin{cases}0, E \neq \{a\}\\1, E = \{a\}\end{cases}</math>. The set <math>\{b, c\}</math> is a null set in this case, but <math>\{b\} \notin \mathcal{M}</math>. | ||
Given an incomplete measure <math>(X, \mathcal{M}, \mu)</math>, the following theorem guarantees that a complete measure space this measure space can be extended to a complete measure space <math>(X, \overline{\mathcal{M}}, \overline{\mu})</math>. | |||
==References== | ==References== | ||
. | . |
Revision as of 02:55, 18 December 2020
Definition
Let be a set and let be a -algebra. Tbe structure is called a measurable space and each set in is called a measurable set. A measure on (also referred to simply as a measure on if is understood) is a function that satisfies the following criteria:
- ,
- Let be a disjoint sequence of sets such that each . Then, .
If the previous conditions are satisfied, the structure is called a measure space.
Additional Terminology
Let be a measure space.
- The measure is called finite if .
- Let . If there exist such that and (for all ), then is -finite for .
- If is -finite for , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} is called Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} -finite.
- Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} be the collection of all the sets in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}} with infinite Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} -measure. The measure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} is called semifinite if there exists Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F \in \mathcal{M}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F \subseteq E} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 < \mu(F) < + \infty} , for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \in S} .
Properties
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(X, \mathcal{M}, \mu\right)} be a measure space.
- Finite Additivity: Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{E_k\right\}_{k = 1}^{n}} be a finite disjoint sequence of sets such that each Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_k \in \mathcal{M}} . Then, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu\left(\cup_{k = 1}^{n} E_k\right) = \sum_{k = 1}^{n} \mu\left(E_k\right)} . This follows directly from the defintion of measures by taking Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{n+1} = E_{n+2} = ... = \emptyset} .
- Monotonicity: Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E, F \in \mathcal{M}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \subseteq F} . Then, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu\left(E\right) \leq \mu\left(F\right)} .
- Subadditivity: Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{E_k\right\}_{k = 1}^{\infty} \subseteq \mathcal{M}} . Then, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu\left(\cup_{k = 1}^{\infty} E_k\right) \leq \sum_{k = 1}^{\infty} \mu\left(E_k\right)} .
- Continuity from Below: Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{E_k\right\}_{k = 1}^{\infty} \subseteq \mathcal{M}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1 \subseteq E_2 \subseteq ...} . Then, .
- Continuity from Above: Let such that and for some . Then, .
Examples
- Let be a non-empty set and . Let be any function from to . Given , define . Then, the function defined by is a measure. This measure has the following properties:
- The measure is semifinite if and only if for every .
- The measure is -finite if and only if is semifinite and is countable for every .
There are special cases of this measure that are frequently used:
- When fixing , the resulting measure is referred to as the counting measure.
- Let be fixed. By defining , the resulting measure is referred to as the point mass measure or the Dirac measure.
- Let be an uncountable set. Let be the -algebra of countable or co-cocountable sets of . The function defined as is a measure.
- Let be an infinite set. Let . The function defined as is not a measure. To verify that it is not a measure, it is sufficient to take , and note that . In other words. the countable additivity property is not satisfied. However, does satisfy the finite additivity property.
Complete Measures
Consider a measure space . A set is called a -null set (or simply null set) if . A property holds -almost everywhere (or simply almost everywhere) if satisfies and .
A measure space is called complete if contains all subsets of its null sets. An incomplete measure space can be constructed by taking and with . The set is a null set in this case, but .
Given an incomplete measure , the following theorem guarantees that a complete measure space this measure space can be extended to a complete measure space .
References
.