Measures: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 5: Line 5:
If the previous conditions are satisfied, the structure <math>\left(X, \mathcal{M}, \mu\right)</math> is called a '''measure space'''.
If the previous conditions are satisfied, the structure <math>\left(X, \mathcal{M}, \mu\right)</math> is called a '''measure space'''.


==Types of Measures==
==Related Terminology==
Let <math>\left(X, \mathcal{M}, \mu\right)</math> be a measure space.
Let <math>\left(X, \mathcal{M}, \mu\right)</math> be a measure space.
* The measure <math>\mu</math> is called '''finite''' if <math>\mu\left(X\right) < +\infty</math>.
* The measure <math>\mu</math> is called '''finite''' if <math>\mu\left(X\right) < +\infty</math>.

Revision as of 19:16, 17 December 2020

Definition

Let be a set and let be a -algebra. Tbe structure is called a measurable space and each set in is called a measurable set. A measure on (also referred to simply as a measure on if is understood) is a function that satisfies the following criteria:

  1. ,
  2. Let be a disjoint sequence of sets such that each . Then, .

If the previous conditions are satisfied, the structure is called a measure space.

Related Terminology

Let be a measure space.

  • The measure is called finite if .
  • Let . If there exist such that and (for all ), then is -finite for .
  • If is -finite for , then is called -finite.
  • Let be the collection of all the sets in with infinite -measure. The measure is called semifinite if there exists such that and , for all .

Properties

Let be a measure space.

  1. Finite Additivity: Let be a finite disjoint sequence of sets such that each . Then, . This follows directly from the defintion of measures by taking .
  2. Monotonicity: Let such that . Then, .
  3. Subadditivity: Let . Then, .
  4. Continuity from Below: Let such that . Then, .
  5. Continuity from Above: Let such that and for some . Then, .

Examples

.

Complete Measures

.

References

.