Cantor Function: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Cantor ternary Function== | ==Cantor ternary Function== | ||
if <math>\mathcal{C}</math> is the Cantor set on [0,1], then the Cantor function ''c''<nowiki> : [0,1] → [0,1] can be defined as</nowiki><ref name=" | if <math>\mathcal{C}</math> is the Cantor set on [0,1], then the Cantor function ''c''<nowiki> : [0,1] → [0,1] can be defined as</nowiki><ref name="The Cantor function">Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M. (2006). Expositiones Mathematicae. Elsevier BV. 24 (1): 1–37. </ref> | ||
:<math>c(x) =\begin{cases} | :<math>c(x) =\begin{cases} |
Revision as of 04:22, 17 December 2020
Cantor ternary Function
if is the Cantor set on [0,1], then the Cantor function c : [0,1] → [0,1] can be defined as[1]
Properties of Cantor Functions
- Cantor Function is continuous everywhere, zero derivative almost everywhere.
- lack of absolute continuity.
- Monotonicity
- Its value goes from 0 to 1 as its argument reaches from 0 to 1.
Cantor Function Alternative
The Cantor Function can be constructed iteratively using homework construction.
References
- ↑ Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M. (2006). Expositiones Mathematicae. Elsevier BV. 24 (1): 1–37.