Caratheodory's Theorem: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
Consider an out measure <math> \mu </math> on <math> X </math>. Define
Consider an out measure <math> \mu </math> on <math> X </math>. Define


<math> \mathcal{M} = \{ A \subseteq X : A is \mu-measurable \} </math>.
<math> \mathcal{M} = \{ A \subseteq X : A \text{is} \  \mu-\text{measurable} \} </math>.


Then <math> \mathcal{M} </math> is a <math>\sigma</math>-algebra and <math> \mu^* </math> is a measure on <math> \mathcal{M} </math>.
Then <math> \mathcal{M} </math> is a <math>\sigma</math>-algebra and <math> \mu^* </math> is a measure on <math> \mathcal{M} </math>.

Revision as of 22:25, 16 December 2020

Statement

Consider an out measure on . Define

.

Then is a -algebra and is a measure on .