Measures: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
# Let <math>\left\{E_k\right\}_{k = 1}^{\infty}</math> be a disjoint sequence of sets contained in <math>\mathcal{M}</math>. Then, <math>\mu\left(\cup_{k = 1}^{\infty} E_k\right) = \sum_{k = 1}^{\infty} \mu\left(E_k\right)</math>.
# Let <math>\left\{E_k\right\}_{k = 1}^{\infty}</math> be a disjoint sequence of sets contained in <math>\mathcal{M}</math>. Then, <math>\mu\left(\cup_{k = 1}^{\infty} E_k\right) = \sum_{k = 1}^{\infty} \mu\left(E_k\right)</math>.


==Properties==
.


==References==
==References==


.
.

Revision as of 16:28, 16 December 2020

This page is under construction.

Definition

Let be a set equipped with a -algebra . A measure on (also referred to simply as measure on if is understood) is a function that satisfies the following criteria:

  1. ,
  2. Let be a disjoint sequence of sets contained in . Then, .

Properties

.

References

.