Lower semicontinuous functions: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 2: Line 2:
:<math> \{ x \in X : f(x) > a \} = f^{-1} \left( ( a , +\infty ] \right) </math>
:<math> \{ x \in X : f(x) > a \} = f^{-1} \left( ( a , +\infty ] \right) </math>
is open in <math> X </math> for all <math> a \in \mathbb{R} </math>.<ref name="Craig">Craig, Katy. ''MATH 201A HW 1''. UC Santa Barbara, Fall 2020.</ref>
is open in <math> X </math> for all <math> a \in \mathbb{R} </math>.<ref name="Craig">Craig, Katy. ''MATH 201A HW 1''. UC Santa Barbara, Fall 2020.</ref>
==Properties==
*If <math> \{x_n\}_{n \in \mathbb{N}} </math> is an convergent sequence in <math>X </math> converging to some <math>x_0 </math>, then <math>f(x_0) \leq \liminf_{n \to \infty} f(x_n)  </math>.<ref name="Craig">Craig, Katy. ''MATH 201A HW 1''. UC Santa Barbara, Fall 2020.</ref>
*If <math> f: X \to \mathbb{R} \cup \{+\infty\}</math> is continuous, then it is lower semicontinuous. <ref name="Craig">Craig, Katy. ''MATH 201A HW 1''. UC Santa Barbara, Fall 2020.</ref>
==Lower Semicontinuous Envelope==
Given any bounded function <math> f :X \to \mathbb{R} </math>, the lower semicontinuous envelope of <math> f </math>, denoted <math> f_* </math> is the lower semicontinuous function defined as
:<math> f_*(x) = \lim_{\epsilon \to 0} \inf\{f(y) : d(x,y) < \epsilon \} = \inf\{\liminf_{n \to \infty} f(x_n) : x_n \to x \}. </math>


==References==
==References==

Revision as of 20:26, 10 December 2020

Let be a metric space (or more generally a topological space). A function is lower semicontinuous if

is open in for all .[1]


Properties

  • If is an convergent sequence in converging to some , then .[1]
  • If is continuous, then it is lower semicontinuous. [1]


Lower Semicontinuous Envelope

Given any bounded function , the lower semicontinuous envelope of , denoted is the lower semicontinuous function defined as

References

  1. 1.0 1.1 1.2 Craig, Katy. MATH 201A HW 1. UC Santa Barbara, Fall 2020.