Simple Function: Difference between revisions
Jump to navigation
Jump to search
(→Proof) |
|||
Line 2: | Line 2: | ||
==Definition== | ==Definition== | ||
Let <math> (X, \mathcal{M}, \mu) </math> be a measure space. A [[Measurable function | measurable function]] <math>f: X \rightarrow \mathbb{R}</math> is a simple function<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> if <math>f(X)</math> is a finite subset of <math> \mathbb{R}</math>. The standard representation for a simple function is given by | Let <math> (X, \mathcal{M}, \mu) </math> be a measure space. A [[Measurable function | measurable function]] <math>f: X \rightarrow \mathbb{R}</math> is a simple function<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> if <math>f(X)</math> is a finite subset of <math> \mathbb{R}</math>. The standard representation<ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> for a simple function is given by | ||
<math> f(x) = \sum_{i=1}^n c_i 1_{E_i} (x) </math>, | <math> f(x) = \sum_{i=1}^n c_i 1_{E_i} (x) </math>, | ||
where <math>1_{E_i} (x)</math> is the indicator function on the disjoint sets <math>E_i = f^{-1}(\{c_i\}) \in \mathcal{M}</math> that partition <math>X</math>, where <math>f(X) = \{c_1, \dots, c_n\}</math>. | where <math>1_{E_i} (x)</math> is the indicator function on the disjoint sets <math>E_i = f^{-1}(\{c_i\}) \in \mathcal{M}</math> that partition <math>X</math>, where <math>f(X) = \{c_1, \dots, c_n\}</math>. | ||
==Integration of Simple Functions== | ==Integration of Simple Functions== |
Revision as of 01:46, 10 December 2020
The simplest functions you will ever integrate, hence the name.
Definition
Let be a measure space. A measurable function is a simple function[1] if is a finite subset of . The standard representation[1] for a simple function is given by
,
where is the indicator function on the disjoint sets that partition , where .
Integration of Simple Functions
These functions earn their name from the simplicity in which their integrals are defined[2]. Let be the space of all measurable functions from to Then
where by convention, we let . Note that is equivalent to and that some arguments may be omitted when there is no confusion.
Furthermore, for any , we define
Properties of Simple Functions
Given simple functions , the following are true[2]:
- if ;
- ;
- if , then ;
- the function is a measure on .
Proof
Let