Simple Function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 2: Line 2:


==Definition==
==Definition==
Let <math> (X, \mathcal{M}, \mu) </math> be a measure space. A [[Measurable function | measurable function]] <math>f: X \rightarrow \mathbb{R}</math> is a simple function if <math>f(X)</math> is a finite subset of <math> \mathbb{R} <ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> The standard representation for a simple function is given by  
Let <math> (X, \mathcal{M}, \mu) </math> be a measure space. A [[Measurable function | measurable function]] <math>f: X \rightarrow \mathbb{R}</math> is a simple function if <math>f(X)</math> is a finite subset of <math> \mathbb{R} <ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref></math>. The standard representation for a simple function is given by  


<math> f(x) = \sum_{i=1}^n c_i 1_{E_i} (x) </math>,
<math> f(x) = \sum_{i=1}^n c_i 1_{E_i} (x) </math>,
Line 8: Line 8:
where <math>1_{E_i} (x)</math> is the indicator function on the disjoint set <math>E_i = f^{-1}(\{c_i\})</math> where <math>f(X) = \{c_1, \dots, c_n\}</math>.
where <math>1_{E_i} (x)</math> is the indicator function on the disjoint set <math>E_i = f^{-1}(\{c_i\})</math> where <math>f(X) = \{c_1, \dots, c_n\}</math>.


</math>.<ref name="Folland">Folland, Gerald B. (1999). ''Real Analysis: Modern Techniques and Their Applications'', John Wiley and Sons, ISBN 0471317160, Second edition.</ref>
<ref name="Folland">Folland, Gerald B. (1999). ''Real Analysis: Modern Techniques and Their Applications'', John Wiley and Sons, ISBN 0471317160, Second edition.</ref>


==Properties of Simple Functions==
==Properties of Simple Functions==

Revision as of 00:06, 10 December 2020

The simplest functions you will ever integrate, hence the name.

Definition

Let be a measure space. A measurable function is a simple function if is a finite subset of Failed to parse (syntax error): {\displaystyle \mathbb{R} <ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref>} . The standard representation for a simple function is given by

,

where is the indicator function on the disjoint set where .

[1]

Properties of Simple Functions

Integration of Simple Functions

References

  1. Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition.