Simple Function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 3: Line 3:
==Definition==
==Definition==
A [[Measurable function | measurable function]] <math>f: X \rightarrow \mathbb{R}</math> is a simple function if <math>f(X)</math> is a finite subset of <math> \mathbb{R} </math>.<ref name="Folland">Folland, Gerald B. (1999). ''Real Analysis: Modern Techniques and Their Applications'', John Wiley and Sons, ISBN 0471317160, Second edition.</ref><ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> The standard representation for a simple function is given by  
A [[Measurable function | measurable function]] <math>f: X \rightarrow \mathbb{R}</math> is a simple function if <math>f(X)</math> is a finite subset of <math> \mathbb{R} </math>.<ref name="Folland">Folland, Gerald B. (1999). ''Real Analysis: Modern Techniques and Their Applications'', John Wiley and Sons, ISBN 0471317160, Second edition.</ref><ref name="Craig">Craig, Katy. ''MATH 201A Lecture 11''. UC Santa Barbara, Fall 2020.</ref> The standard representation for a simple function is given by  
<math> f(x) = \sum_{i=1}^n c_i 1_{E_i} (x) </math>,
<math> f(x) = \sum_{i=1}^n c_i 1_{E_i} (x) </math>,
where <math>1_{E_i} (x)</math> is the indicator function on the disjoint sets <math>E_i = f^{-1}(\{c_i\})</math> where <math>f(X) = \{c_1, \dots, c_n\}</math>.
where <math>1_{E_i} (x)</math> is the indicator function on the disjoint sets <math>E_i = f^{-1}(\{c_i\})</math> where <math>f(X) = \{c_1, \dots, c_n\}</math>.



Revision as of 23:56, 9 December 2020

The simplest functions you will ever integrate, hence the name.

Definition

A measurable function is a simple function if is a finite subset of .[1][2] The standard representation for a simple function is given by

,

where is the indicator function on the disjoint sets where .

Properties of Simple Functions

Integration of Simple Functions

References

  1. Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0471317160, Second edition.
  2. Craig, Katy. MATH 201A Lecture 11. UC Santa Barbara, Fall 2020.