Simple Function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
(Created page with "==Definition== A measurable function <math>f: X \rightarrow \mathbb{R}</math> is a simple function if <math>f(X)</math> is a finite subset of <math> \mathbb{R} </math>.")
 
No edit summary
Line 1: Line 1:
The simplest functions you will ever integrate, hence the name.
==Definition==
==Definition==
A measurable function <math>f: X \rightarrow \mathbb{R}</math> is a simple function if <math>f(X)</math> is a finite subset of <math> \mathbb{R} </math>.
A measurable function <math>f: X \rightarrow \mathbb{R}</math> is a simple function if <math>f(X)</math> is a finite subset of <math> \mathbb{R} </math>.

Revision as of 05:30, 9 December 2020

The simplest functions you will ever integrate, hence the name.

Definition

A measurable function is a simple function if is a finite subset of .