Egerov's Theorem: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 25: Line 25:
By assumptions on <math> f_n</math>, <math>f </math> is measurable, bounded, supported on <math>E </math> for a.e. x and. Fix <math>\epsilon>0 </math>, then by Egerov we may find a measurable subset <math>A_\epsilon </math> of <math> E</math> such that <math> \mu(E\setminus A_\epsilon)<\epsilon </math> and <math>f_n\to f </math> uniformly on <math>A_\epsilon </math>. Therefore, for sufficiently large <math>n </math> we have that <math>|f_n(x)-f(x)|<\epsilon </math> for all <math>x\in A_\epsilon </math>. This then gives
By assumptions on <math> f_n</math>, <math>f </math> is measurable, bounded, supported on <math>E </math> for a.e. x and. Fix <math>\epsilon>0 </math>, then by Egerov we may find a measurable subset <math>A_\epsilon </math> of <math> E</math> such that <math> \mu(E\setminus A_\epsilon)<\epsilon </math> and <math>f_n\to f </math> uniformly on <math>A_\epsilon </math>. Therefore, for sufficiently large <math>n </math> we have that <math>|f_n(x)-f(x)|<\epsilon </math> for all <math>x\in A_\epsilon </math>. This then gives


<math>\int |f_n-f|=\int_E |f_n-f|=\int_{A_\epsilon} |f_n-f|+\int_{E\setminus A_\epsilon}\leq \epsilon \mu(E)+2M \mu(E\setminus A_epsilon)=\epsilon(\mu(E)+2M) </math>
<math>\int |f_n-f|=\int_E |f_n-f|=\int_{A_\epsilon} |f_n-f|+\int_{E\setminus A_\epsilon}\leq \epsilon \mu(E)+2M \mu(E\setminus A_\epsilon)=\epsilon(\mu(E)+2M) </math>


==References==
==References==

Revision as of 20:52, 7 December 2020

Statement

Suppose is a locally finite Borel measure and is a sequence of measurable functions defined on a measurable set with and a.e. on E.

Then: Given we may find a closed subset such that and uniformly on [1]

Proof

WLOG assume for all since the set of points at which is a null set. Fix and for we define . Since are measurable so is their difference. Then since the absolute value of a measurable function is measurable each is measurable.

Now for fixed we have that and . Therefore using continuity from below we may find a such that . Now choose so that and define . By countable subadditivity we have that .

Fix any . We choose such that . Since if then . And by definition if then whenever . Hence uniformly on .

Finally, since is measurable, using HW5 problem 6 there exists a closed set such that . Therefore and on


Corollary

Bounded Convergence Theorem : Let be a seqeunce of measurable functions bounded by , supported on a set and a.e. Then

Proof

By assumptions on , is measurable, bounded, supported on for a.e. x and. Fix , then by Egerov we may find a measurable subset of such that and uniformly on . Therefore, for sufficiently large we have that for all . This then gives

References

  1. Stein & Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Chapter 1 §4.3