Egerov's Theorem: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
Line 12: Line 12:
Now fix any <math> \delta>0 </math>. We choose <math> n\geq N</math> such that <math>\frac{1}{n}\leq \delta </math>. Since <math> n \geq N </math> if <math> x \in \tilde{A}_\epsilon </math> then <math> x \in E_{k_n}^n </math>. And by definition if <math>x \in E_{k_n}^n </math> then <math>|f_j(x)-f(x)|<\frac{1}{n}<\delta </math> whenever <math> j > k_n </math>. Hence <math> f_n \rightarrow f</math> uniformly on <math> \tilde{A}_\epsilon </math>.
Now fix any <math> \delta>0 </math>. We choose <math> n\geq N</math> such that <math>\frac{1}{n}\leq \delta </math>. Since <math> n \geq N </math> if <math> x \in \tilde{A}_\epsilon </math> then <math> x \in E_{k_n}^n </math>. And by definition if <math>x \in E_{k_n}^n </math> then <math>|f_j(x)-f(x)|<\frac{1}{n}<\delta </math> whenever <math> j > k_n </math>. Hence <math> f_n \rightarrow f</math> uniformly on <math> \tilde{A}_\epsilon </math>.


Finally, since <math>\tilde{A}_\epsilon </math> is measurable, using HW5 problem 6 there exists a closed set <math>A_\epsilon\subset \tilde{A}_\epsilon </math> such that <math>\mu(\tilde{A}_\epsilon\setminus A_\epsilon)<\frac{\epsilon}{2} </math>. Therefore <math> \mu(E\setminus A_\epsilon)<\epsilon </math> and <math> f_n \rightarrow f </math> on <math> A_\epsilon/math>
Finally, since <math>\tilde{A}_\epsilon </math> is measurable, using HW5 problem 6 there exists a closed set <math>A_\epsilon\subset \tilde{A}_\epsilon </math> such that <math>\mu(\tilde{A}_\epsilon\setminus A_\epsilon)<\frac{\epsilon}{2} </math>. Therefore <math> \mu(E\setminus A_\epsilon)<\epsilon </math> and <math> f_n \rightarrow f </math> on <math> A_\epsilon </math>
 
==References==
==References==

Revision as of 09:38, 7 December 2020

Statement

Suppose is a locally finite Borel measure and is a sequence of measurable functions defined on a measurable set with and a.e. on E.

Then: Given we may find a closed subset such that and uniformly on

Proof

WLOG assume for all since the set of points at which is a null set. Fix and for we define Now for fixed we have that and . Therefore using continuity from below we may find a such that . Now choose so that and define . By countable subadditivity we have that .

Now fix any . We choose such that . Since if then . And by definition if then whenever . Hence uniformly on .

Finally, since is measurable, using HW5 problem 6 there exists a closed set such that . Therefore and on

References