Egerov's Theorem: Difference between revisions
Jump to navigation
Jump to search
(→Proof) |
|||
Line 8: | Line 8: | ||
<math> E_k^n=\{x \in E: |f_j(x)-f(x)|<\frac{1}{n} \text{ for all } j>k\} </math> | <math> E_k^n=\{x \in E: |f_j(x)-f(x)|<\frac{1}{n} \text{ for all } j>k\} </math> | ||
Now for fixed <math> n </math> we have that <math> E_{k}^n\subset E_{k+1}^n </math> and <math>E_k^n \nearrow E </math>. Therefore using continuity from below we may find a <math> k_n </math> such that <math> \mu(E\setminus E_{k_n}^n)<\frac{1}{2^n} </math>. | Now for fixed <math> n </math> we have that <math> E_{k}^n\subset E_{k+1}^n </math> and <math>E_k^n \nearrow E </math>. Therefore using continuity from below we may find a <math> k_n </math> such that <math> \mu(E\setminus E_{k_n}^n)<\frac{1}{2^n} </math>. | ||
Now choose <math>N </math> so that <math>\sum_{n=N}^\infty 2^{-n}<\frac{\epsilon}{2} </math> and define <math> \tilde{A}_\epsilon=\bigcap_{n\geq N} E_{k_n}^n </math>. By countable subadditivity we have that <math>\mu(E\setminus \tilde{A}_\epsilon)\leq \sum_{n=N}^\infty \mu(E-E_{k_n}^n)<\frac{\epsilon}{2} </math> | Now choose <math>N </math> so that <math>\sum_{n=N}^\infty 2^{-n}<\frac{\epsilon}{2} </math> and define <math> \tilde{A}_\epsilon=\bigcap_{n\geq N} E_{k_n}^n </math>. By countable subadditivity we have that <math>\mu(E\setminus \tilde{A}_\epsilon)\leq \sum_{n=N}^\infty \mu(E-E_{k_n}^n)<\frac{\epsilon}{2} </math>. | ||
Now fix any <math> \delta>0 </math>. We choose <math> n\geq N</math> such that <math>\frac{1}{n}\leq \delta </math>. Since <math> n \geq N </math> if <math> x \in \tilde{A}_\epsilon </math> then <math> x \in E_{k_n}^n </math>. And by definition if <math>x \in E_{k_n}^n </math> then <math>|f_j(x)-f(x)|<\frac{1}{n}<\delta </math> whenever <math> j > k_n </math>. Hence <math> f_n \rightarrow f</math> uniformly on <math> \tilde{A}_\epsilon </math>. | |||
==Proof== | ==Proof== |
Revision as of 09:27, 7 December 2020
Statement
Suppose is a sequence of measurable functions defined on a measurable set with and a.e. on E.
Then: Given we may find a closed subset such that and uniformly on
Proof
WLOG assume for all since the set of points at which is a null set. Fix and for we define Now for fixed we have that and . Therefore using continuity from below we may find a such that . Now choose so that and define . By countable subadditivity we have that .
Now fix any . We choose such that . Since if then . And by definition if then whenever . Hence uniformly on .
Proof
For any , let .
By definition, . And , so by Monotone Convergence Theorem, .
Furthermore, by definition we have , then .
Since exists, taking of both sides: .