Measurable function: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
mNo edit summary
Line 1: Line 1:
Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. A map <math>f:X \to Y</math> is '''<math>(M,N)</math>-measurable''' if <math>f^{-1}(E) \in M</math> for all <math>E \in N.</math>
Let <math>(X,\mathcal{M})</math> and <math>(Y,\mathcal{N})</math> be measure spaces. A map <math>f:X \to Y</math> is '''<math>(\mathcal{M},\mathcal{N})</math>-measurable''' if <math>f^{-1}(E) \in \mathcal{M}</math> for all <math>E \in \mathcal{N}.</math>


==Examples of measurable functions==
==Examples of measurable functions==
* A function <math>f: \mathbb{R} \to \overline{\mathbb{R}}</math> is called a '''Lebesgue measurable function''' if <math>f</math> is <math>(L, B_{\overline{\mathbb{R}}})</math>- measurable, where <math>L</math> is the class of Lebesgue measurable sets and <math>B_{\overline{\mathbb{R}}}</math> is Borel <math>\sigma</math>-algebra.
* A function <math>f: \mathbb{R} \to \overline{\mathbb{R}}</math> is called a '''Lebesgue measurable function''' if <math>f</math> is <math>(\mathcal{L}, \mathcal{B}_{\overline{\mathbb{R}}})</math>- measurable, where <math>\mathcal{L}</math> is the class of Lebesgue measurable sets and <math>\mathcal{B}_{\overline{\mathbb{R}}}</math> is Borel <math>\sigma</math>-algebra.
* A function <math>f: X \to Y</math> is called '''Borel measurable''' if <math>f</math> is <math>(B_X, B_Y)</math>-measurable.
* A function <math>f: X \to Y</math> is called '''Borel measurable''' if <math>f</math> is <math>(\mathcal{B}_X, \mathcal{B}_Y)</math>-measurable.




==Basic theorems of measurable functions==
==Basic theorems of measurable functions==
* Let <math>(X,M)</math> and <math>(Y,N)</math> be measure spaces. Suppose that <math>N</math> is generated by a set <math>\varepsilon</math>. A map <math>f: X \to Y</math> is <math>(M,N)</math>-measurable if <math>f^{-1}(E) \in M</math> for all <math>E \in \varepsilon.</math>
* Let <math>(X,\mathcal{M})</math> and <math>(Y,\mathcal{N})</math> be measure spaces. Suppose that <math>\mathcal{N}</math> is generated by a set <math>\varepsilon</math>. A map <math>f: X \to Y</math> is <math>(\mathcal{M},\mathcal{N})</math>-measurable if <math>f^{-1}(E) \in \mathcal{M}</math> for all <math>E \in \varepsilon.</math>
* Let <math>(X,M)</math>, <math>(Y,N)</math>, and <math>(Z,P)</math> be measure spaces. If a map <math>f: X \to Y</math> is <math>(M,N)</math>-measurable and <math>g: Y \to Z</math> is <math>(N,P)</math>-measurable, then <math>g\circ f: X \to Z</math> is <math>(M,P)</math>-measurable. If <math>N_1</math> is another <math>\sigma</math>-algebra on <math>Y</math> and a map <math>h: Y \to Z</math> is <math>(N_1,P)</math>-measurable, then <math>h \circ f: X \to Z</math> is <math>(M,P)</math>-measurable when <math>N_1 \subseteq N.</math>
* Let <math>(X,\mathcal{M})</math>, <math>(Y,\mathcal{N})</math>, and <math>(Z,\mathcal{P})</math> be measure spaces. If a map <math>f: X \to Y</math> is <math>(\mathcal{M},\mathcal{N})</math>-measurable and <math>g: Y \to Z</math> is <math>(N,\mathcal{P})</math>-measurable, then <math>g\circ f: X \to Z</math> is <math>(\mathcal{M},\mathcal{P})</math>-measurable. If <math>\mathcal{N}_1</math> is another <math>\sigma</math>-algebra on <math>Y</math> and a map <math>h: Y \to Z</math> is <math>(\mathcal{N}_1,\mathcal{P})</math>-measurable, then <math>h \circ f: X \to Z</math> is <math>(\mathcal{M},\mathcal{P})</math>-measurable when <math>\mathcal{N}_1 \subseteq \mathcal{N}.</math>

Revision as of 19:34, 15 November 2020

Let and be measure spaces. A map is -measurable if for all

Examples of measurable functions

  • A function is called a Lebesgue measurable function if is - measurable, where is the class of Lebesgue measurable sets and is Borel -algebra.
  • A function is called Borel measurable if is -measurable.


Basic theorems of measurable functions

  • Let and be measure spaces. Suppose that is generated by a set . A map is -measurable if for all
  • Let , , and be measure spaces. If a map is -measurable and is -measurable, then is -measurable. If is another -algebra on and a map is -measurable, then is -measurable when