Outer measure: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:


: '''Definition.''' A set <math> A \subset X </math> is called <math> \mu^* </math>-measurable if <math>  \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \cap A^c)</math> for all  <math> E \subset X </math>.
: '''Definition.''' A set <math> A \subset X </math> is called <math> \mu^* </math>-measurable if <math>  \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \cap A^c)</math> for all  <math> E \subset X </math>.
==Constructing a measure from an outer measure==





Revision as of 04:52, 30 October 2020

Definition. Let be a nonempty set. An outer measure [1] on the set is a function such that
  • ,
  • if ,

The second and third conditions in the definition of an outer measure are equivalent to the condition that implies .

Definition. A set is called -measurable if for all .


Examples of Outer Measures

The standard example of an outer measure is the Lebesgue outer measure, defined on subsets of .

A near-generalization of the Lebesgue outer measure is given by

where is any right-continuous function [2].

Given a measure space , one can always define an outer measure [3] by

References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §1.4
  2. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §1.5
  3. Craig, Katy. MATH 201A HW 3. UC Santa Barbara, Fall 2020.