Lower semicontinuous functions: Difference between revisions
Jump to navigation
Jump to search
(Created page with "Here is a page where we learn about lower semicontinuous functions!!! <math> f(x) = x^2 </math>") |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math> X </math> be a metric space (or more generally a topological space). A function <math> f : X \to \mathbb{R} \cup \{ +\infty \} </math> is '''lower semicontinuous''' if | |||
:<math> \{ x \in X : f(x) > a \} = f^{-1} \left( ( a , +\infty ] \right) </math> | |||
is open in <math> X </math> for all <math> a \in \mathbb{R} </math>.<ref name="Craig">Craig, Katy. ''MATH 201A HW 3''. UC Santa Barbara, Fall 2020.</ref> | |||
==References== |